Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
BMC Musculoskelet Disord ; 25(1): 292, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622682

BACKGROUND: Magnetic resonance imaging (MRI) can diagnose meniscal lesions anatomically, while quantitative MRI can reflect the changes of meniscal histology and biochemical structure. Our study aims to explore the association between the measurement values obtained from synthetic magnetic resonance imaging (SyMRI) and Stoller grades. Additionally, we aim to assess the diagnostic accuracy of SyMRI in determining the extent of meniscus injury. This potential accuracy could contribute to minimizing unnecessary invasive examinations and providing guidance for clinical treatment. METHODS: Total of 60 (n=60) patients requiring knee arthroscopic surgery and 20 (n=20) healthy subjects were collected from July 2022 to November 2022. All subjects underwent conventional MRI and SyMRI. Manual measurements of the T1, T2 and proton density (PD) values were conducted for both normal menisci and the most severely affected position of injured menisci. These measurements corresponded to the Stoller grade of meniscus injuries observed in the conventional MRI. All patients and healthy subjects were divided into normal group, degeneration group and torn group according to the Stoller grade on conventional MRI. One-way analysis of variance (ANOVA) was employed to compare the T1, T2 and PD values of the meniscus among 3 groups. The accuracy of SyMRI in diagnosing meniscus injury was assessed by comparing the findings with arthroscopic observations. The diagnostic efficiency of meniscus degeneration and tear between conventional MRI and SyMRI were analyzed using McNemar test. Furthermore, a receiver operating characteristic curve (ROC curve) was constructed and the area under the curve (AUC) was utilized for evaluation. RESULTS: According to the measurements of SyMRI, there was no statistical difference of T1 value or PD value measured by SyMRI among the normal group, degeneration group and torn group, while the difference of T2 value was statistically significant among 3 groups (P=0.001). The arthroscopic findings showed that 11 patients were meniscal degeneration and 49 patients were meniscal tears. The arthroscopic findings were used as the gold standard, and the difference of T1 and PD values among the 3 groups was not statistically significant, while the difference of T2 values (32.81±2.51 of normal group, 44.85±3.98 of degeneration group and 54.42±3.82 of torn group) was statistically significant (P=0.001). When the threshold of T2 value was 51.67 (ms), the maximum Yoden index was 0.787 and the AUC value was 0.934. CONCLUSIONS: The measurement values derived from SyMRI could reflect the Stoller grade, illustrating that SyMRI has good consistency with conventional MRI. Moreover, the notable consistency observed between SyMRI and arthroscopy suggests a potential role for SyMRI in guiding clinical diagnoses.


Knee Injuries , Meniscus , Tibial Meniscus Injuries , Humans , Tibial Meniscus Injuries/diagnostic imaging , Tibial Meniscus Injuries/surgery , Tibial Meniscus Injuries/pathology , Knee Injuries/diagnostic imaging , Knee Injuries/surgery , ROC Curve , Magnetic Resonance Imaging/methods , Arthroscopy/methods , Menisci, Tibial/surgery , Sensitivity and Specificity
2.
J Transl Med ; 22(1): 198, 2024 Feb 23.
Article En | MEDLINE | ID: mdl-38395884

BACKGROUND: Angiogenesis inhibitors have been identified to improve the efficacy of immunotherapy in recent studies. However, the delayed therapeutic effect of immunotherapy poses challenges in treatment planning. Therefore, this study aims to explore the potential of non-invasive imaging techniques, specifically intravoxel-incoherent-motion diffusion-weighted imaging (IVIM-DWI) and blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI), in detecting the anti-tumor response to the combination therapy involving immune checkpoint blockade therapy and anti-angiogenesis therapy in a tumor-bearing animal model. METHODS: The C57BL/6 mice were implanted with murine MC-38 cells to establish colon cancer xenograft model, and randomly divided into the control group, anti-PD-1 therapy group, and combination therapy group (VEGFR-2 inhibitor combined with anti-PD-1 antibody treatment). All mice were imaged before and, on the 3rd, 6th, 9th, and 12th day after administration, and pathological examinations were conducted at the same time points. RESULTS: The combination therapy group effectively suppressed tumor growth, exhibiting a significantly higher tumor inhibition rate of 69.96% compared to the anti-PD-1 group (56.71%). The f value and D* value of IVIM-DWI exhibit advantages in reflecting tumor angiogenesis. The D* value showed the highest correlation with CD31 (r = 0.702, P = 0.001), and the f value demonstrated the closest correlation with vessel maturity (r = 0.693, P = 0.001). While the BOLD-MRI parameter, R2* value, shows the highest correlation with Hif-1α(r = 0.778, P < 0.001), indicating the capability of BOLD-MRI to evaluate tumor hypoxia. In addition, the D value of IVIM-DWI is closely related to tumor cell proliferation, apoptosis, and infiltration of lymphocytes. The D value was highly correlated with Ki-67 (r = - 0.792, P < 0.001), TUNEL (r = 0.910, P < 0.001) and CD8a (r = 0.918, P < 0.001). CONCLUSIONS: The combination of VEGFR-2 inhibitors with PD-1 immunotherapy shows a synergistic anti-tumor effect on the mouse colon cancer model. IVIM-DWI and BOLD-MRI are expected to be used as non-invasive approaches to provide imaging-based evidence for tumor response detection and efficacy evaluation.


Colonic Neoplasms , Immune Checkpoint Inhibitors , Programmed Cell Death 1 Receptor , Animals , Humans , Mice , Colonic Neoplasms/diagnostic imaging , Colonic Neoplasms/drug therapy , Diffusion Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/methods , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Immune Checkpoint Inhibitors/therapeutic use
3.
Pharmaceuticals (Basel) ; 16(5)2023 Apr 23.
Article En | MEDLINE | ID: mdl-37242423

Chemical exchange saturation transfer (CEST) MRI is a versatile molecular imaging approach that holds great promise for clinical translation. A number of compounds have been identified as suitable for performing CEST MRI, including paramagnetic CEST (paraCEST) agents and diamagnetic CEST (diaCEST) agents. DiaCEST agents are very attractive because of their excellent biocompatibility and potential for biodegradation, such as glucose, glycogen, glutamate, creatine, nucleic acids, et al. However, the sensitivity of most diaCEST agents is limited because of small chemical shifts (1.0-4.0 ppm) from water. To expand the catalog of diaCEST agents with larger chemical shifts, herein, we have systematically investigated the CEST properties of acyl hydrazides with different substitutions, including aromatic and aliphatic substituents. We have tuned the labile proton chemical shifts from 2.8-5.0 ppm from water while exchange rates varied from ~680 to 2340 s-1 at pH 7.2, which allows strong CEST contrast on scanners down to B0 = 3 T. One acyl hydrazide, adipic acid dihydrazide (ADH), was tested on a mouse model of breast cancer and showed nice contrast in the tumor region. We also prepared a derivative, acyl hydrazone, which showed the furthest shifted labile proton (6.4 ppm from water) and excellent contrast properties. Overall, our study expands the catalog of diaCEST agents and their application in cancer diagnosis.

4.
J Adv Res ; 43: 205-218, 2023 01.
Article En | MEDLINE | ID: mdl-36585109

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by oxidative stress that triggers motor neurons loss in the brain and spinal cord. However, the mechanisms underlying the exact role of oxidative stress in ALS-associated neural degeneration are not definitively established. Oxidative stress-generated phospholipid peroxides are known to have extensive physiological and pathological consequences to tissues. Here, we discovered that the deficiency of glutathione peroxidase 4 (GPX4), an essential antioxidant peroxidase, led to the accumulation of phospholipid peroxides and resulted in a loss of motor neurons in spinal cords of ALS mice. Mutant human SOD1G93A transgenic mice were intrathecally injected with neuron-targeted adeno-associated virus (AAV) expressing GPX4 (GPX4-AAV) or phospholipid peroxidation inhibitor, ferrostatin-1. The results showed that impaired motor performance and neural loss induced by SOD1G93A toxicity in the lumbar spine were substantially alleviated by ferrostatin-1 treatment and AAV-mediated GPX4 delivery. In addition, the denervation of neuron-muscle junction and spinal atrophy in ALS mice were rescued by neural GPX4 overexpression, suggesting that GPX4 is essential for the motor neural maintenance and function. In comparison, conditional knockdown of Gpx4 in the spinal cords of Gpx4fl/fl mice triggered an obvious increase of phospholipid peroxides and the occurrence of ALS-like motor phenotype. Altogether, our findings underscore the importance of GPX4 in maintaining phospholipid redox homeostasis in the spinal cord and presents GPX4 as an attractive therapeutic target for ALS treatment.


Amyotrophic Lateral Sclerosis , Glutathione Peroxidase , Neurodegenerative Diseases , Phospholipids , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Mice, Transgenic , Motor Neurons/metabolism , Motor Neurons/pathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Peroxides , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Phospholipids/metabolism
5.
Brain Behav ; 12(7): e2642, 2022 07.
Article En | MEDLINE | ID: mdl-35687797

INTRODUCTION: The bilateral common carotid artery occlusion (BCCAO) rat model is an ideal animal model for simulating the pathology of chronic brain hypoperfusion in humans. However, dynamic changes in neuronal activity, cellular edema, and neuronal structural integrity in vivo after BCCAO have rarely been reported. The purpose of this study is to use a 9.4 T MRI to explore the pathophysiological mechanisms of vascular dementia. MATERIALS AND METHODS: Twelve Sprague-Dawley (SD) rats were randomly divided into two groups: the sham group and the model group (n = 6 for each group). Rats were subjected to MRI using T2*WI, diffusion tensor imaging (DTI), and DWI sequences by MRI at the following six time points: presurgery and 6 h, 3 days, 7 days, 21 days, and 28 days postsurgery. Then, the T2*, fractional anisotropy (FA), and average apparent diffusion coefficient (ADC) values were measured in the bilateral cortices and hippocampi. After MRI scanning, all rats in both groups were subjected to the Y-maze test, novel object recognition test, and open-field test to assess their learning, memory, cognition, and locomotor activity. RESULTS: The T2*, FA, and ADC values in the cerebral cortex and hippocampus decreased sharply at 6 h after BCCAO in the model group compared with those of the sham group. By Day 28, the T2* and ADC values gradually increased to close to those in the sham group, but the FA values changed little, and the rats in the model group had worse learning, memory, and cognition and less locomotor activity than the rats in the sham group. CONCLUSIONS: The BCCAO is an ideal rat model for studying the pathophysiological mechanisms of vascular dementia.


Brain Ischemia , Carotid Artery Diseases , Cognitive Dysfunction , Dementia, Vascular , Animals , Brain Ischemia/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Dementia, Vascular/diagnostic imaging , Dementia, Vascular/etiology , Diffusion Tensor Imaging , Disease Models, Animal , Hemodynamics , Humans , Magnetic Resonance Imaging , Rats , Rats, Sprague-Dawley
6.
J Extracell Vesicles ; 10(7): e12096, 2021 05.
Article En | MEDLINE | ID: mdl-34035882

Antiangiogenic tyrosine kinase inhibitors (AA-TKIs) have become a promising therapeutic strategy for colorectal cancer (CRC). In clinical practice, a significant proportion of cancer patients temporarily discontinue AA-TKI treatment due to recurrent toxicities, economic burden or acquired resistance. However, AA-TKI therapy withdrawal-induced tumour revascularization frequently occurs, hampering the clinical application of AA-TKIs. Here, this study demonstrates that tumour perivascular cells mediate tumour revascularization after withdrawal of AA-TKI therapy. Pharmacological inhibition and genetic ablation of perivascular cells largely attenuate the rebound effect of CRC vascularization in the AA-TKI cessation experimental settings. Mechanistically, tumour perivascular cell-derived extracellular vehicles (TPC-EVs) contain Gas6 that instigates the recruitment of endothelial progenitor cells (EPCs) for tumour revascularization via activating the Axl pathway. Gas6 silence and an Axl inhibitor markedly inhibit tumour revascularization by impairing EPC recruitment. Consequently, combination therapy of regorafenib with the Axl inhibitor improves overall survival in mice metastatic CRC model by inhibiting tumour growth. Together, these data shed new mechanistic insights into perivascular cells in off-AA-TKI-induced tumour revascularization and indicate that blocking the Axl signalling may provide an attractive anticancer approach for sustaining long-lasting angiostatic effects to improve the therapeutic outcomes of antiangiogenic drugs in CRC.


Colorectal Neoplasms/drug therapy , Extracellular Vesicles/physiology , Neovascularization, Pathologic/metabolism , Angiogenesis Inhibitors/pharmacology , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , China , Colorectal Neoplasms/metabolism , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/antagonists & inhibitors , Extracellular Vesicles/metabolism , Female , Humans , Lung Neoplasms/drug therapy , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Mutation/drug effects , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/prevention & control , Perivascular Epithelioid Cell Neoplasms/drug therapy , Perivascular Epithelioid Cell Neoplasms/metabolism , Perivascular Epithelioid Cell Neoplasms/physiopathology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Signal Transduction/drug effects , Substance Withdrawal Syndrome/physiopathology , Xenograft Model Antitumor Assays
7.
Eur Radiol ; 31(9): 7039-7046, 2021 Sep.
Article En | MEDLINE | ID: mdl-33630159

OBJECTIVE: This study aims to investigate the safety and feasibility of using a deep learning algorithm to calculate computed tomography angiography-based fractional flow reserve (DL-FFRCT) as an alternative to invasive coronary angiography (ICA) in the selection of patients for coronary intervention. MATERIALS AND METHODS: Patients (N = 296) with symptomatic coronary artery disease identified by coronary computed tomography angiography (CTA) with stenosis over 50% were retrospectively enrolled from a single centre in this study. ICA-guided interventions were performed in patients at admission, and DL-FFRCT was conducted retrospectively. The influences on decision-making by using DL-FFRCT and the clinical outcome were compared to those of ICA-guided care for symptomatic CAD at the 2-year follow-up evaluation. RESULT: Two hundred forty-three patients were evaluated. Up to 72% of diagnostic ICA studies could have been avoided by using a DL-FFRCT value > 0.8 as a cut-off for intervention. A similar major adverse cardiovascular event (MACE) rate was observed in patients who underwent revascularisation with a DL-FFRCT value ≤ 0.8 (2.9%) compared to that of ICA-guided interventions (3.3%) (stented lesions with ICA stenosis > 75%) (p = 0.838). CONCLUSION: DL-FFRCT can reduce the need for diagnostic coronary angiography when identifying patients suitable for coronary intervention. A low MACE rate was found in a 2-year follow-up investigation. KEY POINTS: • Seventy-two percent of diagnostic ICA studies could have been avoided by using a DL-FFRCT value > 0.8 as a cut-off for intervention. • Coronary artery stenting based on the diagnosis by using a 320-detector row CT scanner and a positive DL-FFRCT value could potentially be associated with a lower occurrence rate of major adverse cardiovascular events (2.9%) within the first 2 years. • A low event rate was found when intervention was performed in tandem lesions with haemodynamic significance based on DL-FFRCT < 0.8 as a cut-off value.


Coronary Artery Disease , Coronary Stenosis , Deep Learning , Fractional Flow Reserve, Myocardial , Algorithms , Computed Tomography Angiography , Coronary Angiography , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/therapy , Coronary Stenosis/diagnostic imaging , Coronary Stenosis/therapy , Hemodynamics , Humans , Predictive Value of Tests , Retrospective Studies , Severity of Illness Index , Tomography, X-Ray Computed
8.
PLoS One ; 10(4): e0122454, 2015.
Article En | MEDLINE | ID: mdl-25874690

BACKGROUND: Obstructed nephropathy is a common complication of several disease processes. Accurate evaluation of the functional status of the obstructed kidney is important to achieve a good outcome. The purpose of this study was to investigate renal cortical and medullary perfusion changes associated with unilateral ureteral obstruction (UUO) using whole-organ perfusion imaging with 320-detector row computed tomography (CT). METHODOLOGY/PRINCIPLE FINDINGS: Sixty-four patients with UUO underwent whole-organ CT perfusion imaging. Patients were divided into 3 groups, mild, moderate, and severe, based on hydronephrosis severity. Twenty sex- and age-matched patients without renal disease, who referred to abdominal CT, were chosen as control subjects. Mean cortical and medullary perfusion parameters of obstructed and contralateral kidneys were compared, and mean perfusion ratios between obstructed and contralateral kidneys were calculated and compared. Mean cortical or medullary blood flow (BF) and blood volume (BV) of the obstructed kidneys in the moderate UUO and BF, BV, and clearance (CL) in the severe UUO were significantly lower than those of the contralateral kidneys (p < 0.05). The mean cortical or medullary BF of the obstructed kidney in the moderate UUO, and BF, BV, and CL in the severe UUO were significantly lower than those of the kidneys in control subjects (p < 0.05). Mean cortical or medullary BF of the non-obstructed kidneys in the severe UUO were statistically greater than that of normal kidneys in control subjects (p < 0.05). An inverse correlation was observed between cortical and medullary perfusion ratios and grades of hydronephosis (p < 0.01). CONCLUSIONS/SIGNIFICANCE: Perfusion measurements of the whole kidney can be obtained with 320-detector row CT, and estimated perfusion ratios have potential for quantitatively evaluating UUO renal injury grades.


Hydronephrosis/physiopathology , Kidney/physiopathology , Tomography, X-Ray Computed/methods , Ureteral Obstruction/physiopathology , Adult , Aged , Female , Humans , Hydronephrosis/complications , Kidney/blood supply , Kidney/pathology , Male , Middle Aged , Perfusion , Perfusion Imaging/methods , Reproducibility of Results , Severity of Illness Index , Ureteral Obstruction/complications , Young Adult
9.
Acad Radiol ; 22(6): 743-51, 2015 Jun.
Article En | MEDLINE | ID: mdl-25772582

RATIONALE AND OBJECTIVES: To assess the diagnostic value of dual-energy (DE) computed tomography pulmonary angiography (CTPA) for acute pulmonary embolism (PE) using a helical DE scan mode with rapid kVp switching. MATERIALS AND METHODS: Seventy-six patients with suspected acute PE underwent DE CTPA. Two readers independently assessed and measured the iodine maps. CTPA images were assessed for the presence, location, and degree of PE as the standard of reference. Iodine maps were used to identify the perfusion defect (PD), and the diagnostic accuracy of iodine maps was calculated. The iodine concentrations of PDs and normal lung parenchyma were also measured and compared. RESULTS: A per-patient analysis showed the 84.6% sensitivity and 96.0% specificity of iodine map for PE, and on per-segment analysis, the sensitivity and specificity for PE were 82.9% and 99.6%, respectively. Intraobserver and interobserver variability correlations were excellent, with k values from 0.806 to 1.000. Quantitative analysis showed there was a significant difference for iodine concentration between circumscribed/patchy PDs or wedge-shaped PDs consistent with PE and normal lung parenchyma (P < .05). The intraobserver reliability of reader 1 was from 0.928 to 0.997, and reader 2 was from 0.912 to 0.995. And, the interobserver reliability between two readers was from 0.967 to 0.999. CONCLUSIONS: CTPA based on DE scanning with rapid kVp switching can provide both morphologic analysis and quantitative evaluation of PD related to acute PE in addition to standard CTPA data. Quantification of iodine concentration may be helpful for identifying the presence or absence of PE.


Contrast Media/pharmacokinetics , Multidetector Computed Tomography/methods , Pulmonary Artery/diagnostic imaging , Pulmonary Embolism/diagnostic imaging , Radiography, Dual-Energy Scanned Projection/methods , Triiodobenzoic Acids/pharmacokinetics , Acute Disease , Adult , Aged , Aged, 80 and over , Feasibility Studies , Female , Humans , Iodine/pharmacokinetics , Male , Middle Aged , Observer Variation , Radiographic Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity , Young Adult
10.
Urology ; 84(4): 760-5, 2014 Oct.
Article En | MEDLINE | ID: mdl-25096333

OBJECTIVE: To evaluate the impact of reduced-radiation dual-energy (DE) protocols using 320-detector row computed tomography on the differentiation of urinary calculus components. MATERIALS AND METHODS: A total of 58 urinary calculi were placed into the same phantom and underwent DE scanning with 320-detector row computed tomography. Each calculus was scanned 4 times with the DE protocols using 135 kV and 80 kV tube voltage and different tube current combinations, including 100 mA and 570 mA (group A), 50 mA and 290 mA (group B), 30 mA and 170 mA (group C), and 10 mA and 60 mA (group D). The acquisition data of all 4 groups were then analyzed by stone DE analysis software, and the results were compared with x-ray diffraction analysis. Noise, contrast-to-noise ratio, and radiation dose were compared. RESULTS: Calculi were correctly identified in 56 of 58 stones (96.6%) using group A and B protocols. However, only 35 stones (60.3%) and 16 stones (27.6%) were correctly diagnosed using group C and D protocols, respectively. Mean noise increased significantly and mean contrast-to-noise ratio decreased significantly from groups A to D (P <.05). In addition, the effective dose decreased markedly from groups A to D at 3.78, 1.81, 1.07, and 0.37 mSv, respectively. CONCLUSION: Decreasing the DE tube currents from 100 mA and 570 mA to 50 mA and 290 mA resulted in 96.6% accuracy for urinary calculus component analysis while reducing patient radiation exposure to 1.81 mSv. Further reduction of tube currents may compromise diagnostic accuracy.


Tomography, X-Ray Computed , Urinary Calculi/chemistry , Urinary Calculi/diagnostic imaging , Adolescent , Adult , Aged , Humans , In Vitro Techniques , Middle Aged , Prospective Studies , Radiation Dosage , Tomography, X-Ray Computed/methods , Young Adult
...